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Abstract 
A solution to the phase problem of electron diffraction is 
described which allows an aberration-free atomic resolu- 
tion image of Si(110), showing the expected dumbbell 
contrast, to be reconstructed at a resolution of 3 times the 
point resolution and 2.5 times the information limit of the 
scanning transmission electron microscope (STEM) 
used. The data set required consists of coherent 
microdiffraction patterns recorded as a function of 
illuminating probe position and the method of image 
reconstruction beyond the conventional resolution limits 
using this data set is described. Using the inherent 
redundancy in the experimental data set, the accuracy of 
the reconstructed image is examined and the experi- 
mental imperfections that affect it are identified. It is 
found that aperture charging, compounded by distortions 
in the detection system, are the major sources of error. As 
an additional application of this method of phase 
retrieval, the diffracted-beam phases of electrons that 
have lost energy by exciting a plasmon are compared 
with those of elastically scattered electrons in a specimen 
of graphite. Within the limits of this approach, it is found 
that there is no difference in the beam phases, supporting 
the view that electrons that have undergone multiple 
elastic and inelastic scattering dominate the plasmon-loss 
scattering at higher angles. 

I. Introduction 
Although the resolution of the transmission electron 
microscope is usually limited by the aberrations of the 
image-forming lens, here we show how a solution to the 
phase problem provides an opportunity to overcome this 
limit. In conventional weak-phase-object imaging, the 
point resolution is the highest periodicity that can be 
directly interpreted in terms of the specimen structure 
[see Spence (1988) for a review of resolution limits in 
TEM]. Beyond this limit, the information is corrupted 
and contrast reversals occur. Various techniques have 
been suggested in order to solve for the phase of the 
image-plane wave function, such as off-axis holography 
(Lichte, 1991; Orchowski, Rau & Lichte, 1995) and 
focal-series reconstruction (Van Dyck, Op de Beeck & 
Coene, 1993). Knowledge of the image phase informa- 
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tion allows the lens aberrations to be deconvolved, thus 
extending the resolution. However, the partial coherence 
of the electron wave in the microscope provides a further 
limit, known as the information limit, determined by the 
inability of high spatial frequencies to express themselves 
at all upon the image contrast. 

An alternative technique of phase retrieval has been 
proposed by Rodenburg & Bates (1992), which allows 
the lens aberrations to be deconvolved and uses a method 
of aperture synthesis to reconstruct the phase information 
for scattering beyond the conventional information limit. 
Optical configurations for such a method are discussed 
more fully in the following paper (Plamann & Roden- 
burg, 1998) (paper II). The data set used experimentally 
in this work is the intensity of coherent microdiffraction 
patterns recorded in a scanning transmission electron 
microscope (STEM) as a function of the illuminating 
probe position. By reciprocity (Cowley, 1969; Zeitler & 
Thomson, 1970), this data set is equivalent to the set of 
conventional TEM images collected as a function of the 
illuminating beam tilt. In the case of a weakly scattering 
object, application of the aperture synthesis method can 
separate aberration-free information up to twice the point 
resolution and a deconvolution of lens aberrations is not 
required (Rodenburg, McCallum & Nellist, 1993). The 
image information for a crystalline specimen can be 
similarly separated (McCallum & Rodenburg, 1993a). In 
this case, only a line scan of probe positions is required 
and, in principle, a resolution improvement of many 
times the conventional limits can be achieved. 

For a crystalline specimen, the aperture synthesis 
method is similar to an approach proposed earlier by 
Hoppe (1969) and Hoppe & Strube (1969), by which a 
reduction in the illuminated area of the specimen causes 
the diffracted orders to overlap and coherently interfere, 
thus revealing their phase relationships; this approach has 
been given the name 'ptychography' (Hegerl & Hoppe, 
1970). Such a configuration is realized in the STEM and 
use of the coherent diffraction information has been 
proposed as a source of resolution improvement (Cowley 
& Jap, 1976; Nathan, 1976; Spence, 1978). High-angle 
coherent diffraction information has been utilized 
experimentally to accurately located atom positions in 
Si(ll0) by Konnert, D'Antonio, Cowley, Higgs & Ou 
(1989), but their approach was to match the experimental 
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pattems with forward calculations from a model 
structure. Here we describe the details of the direct 
ptychographic image reconstruction of Si( l l0) ,  which 
has already been reported briefly elsewhere (Nellist, 
McCallum & Rodenburg, 1995), and examine the 
accuracy of the reconstructed phase information. Since 
the recorded data set has higher dimensionality than the 
two-dimensional reconstructed image, it contains redun- 
dancy that can be used as a self-measure of the accuracy 
of the reconstruction. This property is used to detect any 
experimental imperfections, and here we clearly detect 
the effects of aperture blade charging. As an alternative 
application of this solution to the diffracted-beam phase 
problem, we also present data recorded from a specimen 
of graphite to compare the scattering of the zero energy- 
loss and plasmon-loss electrons. Paper II (Plamann & 
Rodenburg, 1998) considers how dynamical scattering 
and the breakdown of the two-dimensional specimen 
approximation affects the ptychographical reconstruction 
used here. 

2. Aperture synthesis image of Si(ll0) 

The microscope used to collect all the experimental data 
presented here was a VG Microscopes HB501 scanning 
transmission electron microscope (STEM). It has an 
accelerating voltage of 100 kV and an objective lens 
designed for mainly analytical purposes with a coeffi- 
cient of spherical aberration, Cs, of 3.1 mm. Thus, the 
conventional phase-contrast point resolution is 0.42 nm 
and the information limit for axial bright-field imaging 
is about 0.33 nm. The microdiffraction patterns were 
energy filtered then detected using a YAG scintillator 
coupled via a fibre optic to a Photek ICCD 125 image- 
intensifying TV-rate charge-coupled-device (CCD) cam- 
era. Coherent microdiffraction patterns were collected 
using a 256 x 256 array of CCD pixels over a single line 
scan of 64 probe positions with a spacing of 0.1 nm. The 
beam was incident along the [110] direction of a 7 nm 
thick specimen of silicon. We can form the conventional 
incoherent convergent-beam electron diffraction (CBED) 
pattern (Fig. 1) by summing the data over all probe 
positions. 

Consider a microdiffraction pattern in which the 
diffracted discs represented by the G and G + H  
reciprocal-lattice vectors overlap (Fig. 2). If the illumi- 
nating convergent beam is sufficiently coherent (the exact 
condition will become apparent below), interference can 
occur in the overlap region. The form of the intensity in 
the overlap will therefore be dependent on the phase 
variation across each diffracted disc. Each diffracted 
beam will have a complex amplitude given by the 
corresponding Fourier component of the object function; 
the complex amplitude of the G beam we will label as 
qJG and similarly for G + H. In addition, there will be a 
phase change across a diffracted disc due to the 
objective-lens aberration. These aberrations cause a 

phase shift of the illuminating convergent waves as a 
function of angle, which results in a phase variation 
across each of the diffracted discs. In the absence of 
astigmatism, the phase shift is given by 

z(K) = zrzZlKI 2 q- ½n'fs~.3lKI 4, (1) 

where K is a reciprocal-space vector corresponding to the 
angle of the illuminating wave, z is the lens defocus, ;~ is 
the electron wavelength and Cs is the coefficient of 
spherical aberration. We must also include the probe- 
position information, which, being a shift in real space, is 
a linear phase term across each diffracted disc in 
reciprocal space. Thus, the intensity in the overlap region 
is 

IM(it', p)l 2 = IqJG exp{i[x(it' -- G) + 2zrp. (It' - G)]} 

+ qJc+n exp{i[x(it' - G - H) 

+ 2n'p. ( i t ' -  G - H)]}I 2, (2) 

where p is the real-space probe-position vector and It' is 
the position vector in the microdiffraction plane (in 
previous papers, this vector has been referred to as r', 
following the image-processing convention). Expanding 
(2) gives 

IM(It', p)l 2 -- IqJcl 2 -t-IkI/G+HI 2 

+ 21qJcq%+riI cos{(c~c - o~c+n) 

+ I x ( I t  - 6 )  - x ( I t '  - 6 - n ) ]  

+ 2zrp. rI}, (3) 

Fig. 1. An indexed CBED pattern from silicon oriented with the beam 
incident along the [110] direction. In practice, this figure has been 
formed by summing the coherent microdiffraction patterns for every 
probe position. The logarithm of the intensity is shown, to reduce the 
dynamic range of the figure. 
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where OtG and OtC,+H are the phases of the beams G and 
G + H, respectively. 

The first term of the cosine argument in (3) shows how 
the interference contains the phase difference between the 
interfering adjacent diffracted beams. Having determined 
the phase difference of  all neighbouring beams in a 
diffraction pattern, it is a simple matter to determine the 
phases of all the recorded beams by a process of 
'stepping out'. We start by assigning an arbitrary phase of 
0 ° to the zero-order beam, which then allows us to 
determine the phases of any diffracted beams whose discs 
overlap with the zero-order beam. We can now use the 
phases of these diffracted beams together with their 
overlap with higher-angle diffracted beams to assign 
phases to these higher-angle beams and continue this 
procedure for all available overlap regions. The magni- 
tude of the diffracted beams can be calculated by taking 
the square root of  the intensity in non-overlapping parts 
of  the diffracted discs. Finally, an image can be computed 
by taking the inverse Fourier transform of the magnitude 
and phase of the recorded diffracted beams. 

Implicit here is the assumption that the phase of  a 
diffracted beam is not dependent on the illumination tilt, 
so that different parts of  a diffracted disc can be assigned 
with the same diffracted-beam phase. This assumption is 
valid for very thin specimens, where the effects of  
wavefunction propagation within the specimen are 
negligible. In the kinematical approximation, the beam 

overlapping 
diffracted discs 

detector 

~ across specimen 

~ objective lens 

~ /  objective aperture 

I' electron source 
Fig. 2. The formation of overlapping discs in a scanning transmission 

electron microscope (STEM). A lens focuses a convergent beam of 
electrons to form a probe that can be scanned over a specimen. In the 
far field, a CBED pattern is formed and interference can occur in the 
disc-overlap regions. The dashed lines indicate paths of the electrons 
that interfere at the centres of the overlaps. They pass through 
diametrically opposite parts of the objective lens and therefore 
experience identical phase shifts due to the lens aberrations. 

phase will vary across a disc due to propagation effects. 
At the centre of a disc overlap region, however, the 
excitation errors for the two diffracted beams will be 
identical and in this case also there will be no phase error. 
The limits to thickness and methods of data interpretation 
for full dynamical theory are discussed extensively in 
paper II (Plamann & Rodenburg, 1998). 

The second term in the cosine argument of (3) shows 
that the intensity in an overlap region can vary across the 
overlap due to the effect of  lens aberrations. If  we 
substitute using (1) and expand the defocus terms, then 
the second term of the cosine argument is 

X(it' - G)  - X(it' - C - H)  

= zrzZ[2p'. H - 2 G .  H - IHI 2] 

+ ½~rCs3.3[lit ' -  GI 4 - l i t ' -  G - HI4]. (4) 

The defocus terms is linear in it' and therefore defocus 
will cause the disc overlap regions of a coherent 
microdiffraction pattern to show straight fringes perpen- 
dicular to the relative reciprocal-lattice vector connecting 
the discs [see for example Vincent, Midgley & Spellward 
(1993) who also noted that astigmatism can rotate the 
direction of  the fringes]. However, the spherical aberra- 
tion term has a cubic dependence on it' and will distort 
the uniformity of the fringes. It is important to note that 
for any centrosymmetric aberration, such as spherical 
aberration or astigmatism, setting it' = G + H/2  (which 
is the position of the centre of the overlap region) sets (4) 
to zero and therefore aberration-free information can be 
obtained. The physical reason for this is that the beams 
interfering at this point have passed through diametrically 

Fig. 3. An example of a heavily defocused coherent microdiffraction 
pattern from a relatively thick Si(110) crystal. Note the interference 
fringes in the overlap regions. 
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opposite parts of the objective lens (Fig. 2) and the 
aberrations cancel. Fig. 3 is an example of a defocused 
coherent microdiffraction pattern from a relatively thick 
Si(110) crystal. For ptychographical aperture synthesis, it 
is advantageous to work with a focused probe, which 
reduces the effects of detector incoherence (Nellist & 
Rodenburg, 1994) and improves the accuracy of the 
technique, as will be discussed later. Using a focused 
probe involves using underfocus to counteract the effects 
of spherical aberration, which results in (4) being a much 
flatter function of It'. 

The final term in the argument of the cosine function 
in (3) shows that the intensity in a disc-overlap region 
varies sinusoidally as a function of probe position. This 
effect is simply STEM lattice imaging (Spence & 
Cowley, 1978). Such an intensity variation is observed 
experimentally, as is shown in Fig. 4, where the intensity 
at points in various disc overlaps has been plotted. It is 
important to note that the spatial frequency of the 

intensity variation depends only on the difference of the 
two scattering vectors involved, not on the absolute angle 
of diffraction. Since there are only three different relative 
reciprocal-lattice vectors for the disc overlaps in Fig. 1, 
there are only three possible spatial frequencies of 
intensity variation. Equation (3) shows that the frequency 
of intensity variation along a line scan is given by the 
component of the relative reciprocal-lattice vector, H, 
parallel to the scan direction. By selecting an appropriate 
scan direction, we can conveniently separate the three 
spatial frequencies. A full two-dimensional probe scan is 
not required. We proceed by taking the Fourier transform 
of the intensity data with respect to the probe position to 
form a data set we call G(It',IY) [see Plamann & 
Rodenburg (1998) for the full expression], where p' is the 
reciprocal-space vector conjugate to p. The plane p' = 0 
of G(it', p') is simply the CBED pattern shown in Fig. 1. 
We also observe significant magnitude in G(it', p') at 
three other frequencies, as shown in Fig. 5, correspond- 
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Fig. 4. Plots of intensity versus_probe position for various disc overlaps 
corresponding to the (a) (111), (b) (111) and (c) (002) relative 
reciprocal-lattice vectors. Notice how the period of the variation 
depends on the component of the relative reciprocal-lattice vector 
along the scan direction, not on the absolute scattering angle. Thus, 
the interference involving the 00 Z, disc can be resolved by the 
microscope and has a relatively long period along the line scan used. 
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ing to the relative reciprocal-lattice vectors for the three 
different types of overlap. All the overlaps of a particular 
type show interference at one frequency, independent of 
the absolute scattering angle. For the crystalline case 
considered here, the overlaps are all separated and (3) 
shows that the magnitude of a disc-overlap feature in 
G(p', p') is given by the product of the magnitudes of the 
two diffracted beams and the phase of GOt', p') is given 
by the first two terms of the cosine argument in (3). Had 
we not moved the probe, there would have been an 
ambiguity of sign for the phase difference between the 
diffracted beams owing to the cosine being an even 

function. Moving the probe solves the sign ambiguity 
and allows us to separate the Fourier components of the 
image. We can therefore take the phase of G(la', p') at the 
centre of an overlap, which is the aberration-free point, to 
be the phase difference of the interfering beams and use 
these for the stepping-out procedure. 

By thinking of the intensity variation in an overlap as 
lattice imaging, it can now be seen that the microscope 
only requires the stability and coherence required to 
observe the fringes corresponding to the largest relative 
reciprocal-lattice vector, H, which in this experiment 
corresponds to a spacing of 0.27nm. There is no 

(a) (b) 

(3 

Fig. 5. A map of the magnitude of the Fourier transform, with respect to 
the probe-position vector, of the recorded intensities at each detector 
pixel for the spatial_frequencies corresponding to the component of 
the (a) (i 11), (b) (111) and (c) (002) reciprocal-lattice vectors along 
the probe line-scan direction. This figure therefore indicates where 
the detected intensity varies at the quoted frequency as the probe is 
scanned. Note how the intensities in all the overlap regions 
corresponding to the same relative reciprocal-lattice vector vary at 
the same spatial frequency. 
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coherence limit on the absolute scattering angle that 
can be used, thus it is the stepping-out procedure that 
allows image reconstruction as a resolution well beyond 
the information limit. Indeed, Hoppe (1982) realized that 
the conventional resolution limits did not apply to 
ptychography. 

Although we have three relative reciprocal-lattice 
vectors available in this experiment, we only need two 
to span the two-dimensional diffraction space. For the 
data presented here, we shall see later that aperture 
charging results in an asymmetric X function, which 

prevents the use of all three vectors, so stepping out was 
performed using the (311) and the (002)__relative 
reciprocal-lattice vectors only. The T 11 and 111 beams 
could therefore be phased directly from the 0_00 beam, 
and these two beams were used to phase the 111 and 111 
beams using the (002) relative reciprocal-lattice vector 
overlaps. From these { 111 } beams, the (002)-type 
overlaps were again used to phase the { 113} beams, 
which could then be used to phase the {004} beams 
using the (111) relative reciprocal-lattice vector overlaps. 
The phases of diffracted beams out as far as the {004} 

i~ I~̧ ̧̧̧ ~̧ ~ii~ .... 

(a) 

!~I~Z!~I : 

(b) 

(c) (d) 
Fig. 6. Reconstructed images for the (a), (b) 4.5 nm thick specimen and (c), (d) 7 nm thick specimen. The magnitudes are shown in (a) and (c): the 

grey scale spans the range 91 (black) to 239 (white) arbitrary units for (a) and 24 (black) to 317 (white) arbitrary units for (b). The phases are 
shown in (b) and (d); the grey scale spans the range -0.67 to +1.81 rad for (b) and -1.00 to +2.85 rad for (d). 



P. D. NELLIST AND J. M. RODENBURG 55 

Table 1. The reconstructed phases of  all beams up to O04 for approximately 4.5 nm and 7 nm thick specimens of  
Si(llO) 

The theoretical phases using a multislice calculation are also presented for various thicknesses. For the experimental results, the arbitrary origin of 
real space has been set by minimizing the phase differences between the four { 111 }-type symmetry-related beams. 

Experimental Experimental Calculated Calculated Calculated 
phase ~ r  phase for phase for phase ~ r  phase for 

Beam 4.5 nm (°) 7 nm (°) 3 nm (°) 6 nm (°) 9 nm (°) 

l i l  +112 +138 +109 +127 +156 
_ _  

111 +120 +138 +109 +127 +156 
i l l  +120 +137 +109 +127 +156 
111 +128 +138 +109 +127 +156 
220 +128 -169 +124 +153 -166 
220 +171 +171 +124 +153 -166 
113 -49  +6 -53  -23 +13 

_ _  

113 -51 -1  -53 -23  +13 
113 -59  - 9  -53 -23 +13 
113 -26  - 3  -53  -23  +13 
004 0 +50 -43  -1  +53 
004 -17  +38 -43  -1  +53 

reflections were determined. Note that, at the thicknesses 
used, the kinematically forbidden {002} and {222} 
beams were not present in any significance, they do not 
show strong interference features in Fig. 5 and therefore 
were not included in the reconstruction. The magnitudes 
of the diffracted beams were determined from the non- 
overlapping parts of the discs in the CBED pattern (Fig. 
1). In general, however, a reconstructed image is usually 
much more sensitive to the phases of its Fourier 
components rather that the magnitudes (Ramachandran 
& Srinivasen, 1970). The reconstructed image for the 
approximately 7 nm thick crystal is shown in Fig. 6, 
along with a similar reconstruction for a crystal 
approximately 4.5 nm thick. These images are aberration 
free and contain periodicities as small as 0.136 nm, thus 
resolving the atomic columns. An improvement of a 
factor of 3 over the point resolution and a factor of 2.5 
over the conventional information limit has been 
achieved. 

It can be seen from Fig. 6 that the distance between the 
phase maxima for a dumbbell pair is slightly larger than 
the 0.136 nm expected. The sharp truncation of recipro- 
cal space beyond the 004 reflections results in the atomic 
locations being convolved with a point spread function 
(PSF). Addition of the PSF's for the adjacent atoms has 
the effect of apparently widening the spacing slightly. 
However, this image is perfectly periodic and the quality 
of the reconstruction is therefore more easily considered 
in reciprocal space. 

3. The accuracy of the reconstructed phases 

We have shown how it is possible to solve the phase 
problem and reconstruct images beyond the information 
limit using aperture synthesis. However, at this point we 
should examine how accurately we have determined the 
phases in the experimental data. To determine the quality 

of the reconstruction, we compare the experimentally 
determined phases with those expected theoretically. 
Table 1 shows the reconstructed phases for the two 
specimen thicknesses. We have arbitrarily shifted the 
origin of real space to a centre of symmetry in the crystal 
so that the experimental phases of the Fourier compo- 
nents can be compared with theory. The position of the 
centre of symmetry was chosen by minimizing the 
differences between the four {111} beams. Any errors in 
the determined phases of these beams, and therefore in 
determining the centre of symmetry, will manifest 
themselves as errors in the phases of the higher-order 
beams. We can immediately see that the phases have 
deviated considerably from the ±90 ~ expected from 
kinematical theory. So, in Table 1, we also present the 
phases determined from dynamical calculations 
(Plamann & Rodenburg, 1998) for various thicknesses. 
Propagation effects will in general cause a further 
variation in phase over a diffracted disc, and thus the 
phases determined here by stepping out also deviate from 
the Fourier components of the exit-surface wavefunction 
for axial illumination. 

Although the phases in Table 1 are generally within the 
range defined by the calculations for thicknesses closest 
to the experimental ones, it can be seen that there is a 
degree of variation in the determined phases for 
symmetry-related beams, especially for the thinner 
specimen. There are many possible reasons for this and 
we will examine some here. 

It is possible that there are multiple paths of stepping 
out to reach any given reciprocal-lattice point. Both paths 
must give the same result since the phase of the diffracted 
beam must be single valued. Equivalently, the phase 
difference round any closed path of relative reciprocal- 
lattice vectors must sum to zero, which we call 'phase 
closure' and is a useful check on the self-consistency of 
the experimental data. The results of some phase-closure 
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triangle and parallelogram loops are shown in Fig. 7. 
Notice how the triangle phase closures are about as far 
from 0 ° as it is possible to be, whereas the parallelogram 
phase closures are much closer to 0 °. This result is 
consistent with the phase of the aperture function, X, not 
being centrosymmetric. An asymmetric aperture-function 
phase will cause the second term of the cosine argument 
in (3) to be non-zero at the centre of the overlap and its 
value will be a function of the relative reciprocal-lattice 
vector. Thus, for each different relative reciprocal-lattice 
vector used, the phase difference measured will include a 
phase offset. In the case of a parallelogram closure, only 
two different relative reciprocal-lattice vectors are used, 
both of which are used in both directions, and therefore 
the phase offsets will cancel. The triangle loops use three 
different reciprocal-lattice vectors and will therefore not 
close in the case of an asymmetric aperture phase 

Thickness 

4.5 nm 

(111) (111) 
(a) 

7nm 

(Tll) (1~1) 

+... 
_o • 

(111) (1T~) 
(b) 

function. Thus, only two relative reciprocal-lattice 
vectors were used for the reconstructions in §2, since 
using all three would have given rise to inconsistencies. 
The phase offsets for the two relative reciprocal-lattice 
vectors used add a linear phase ramp across the complex 
reconstructed Fourier spectrum, which is simply a shift in 
the origin of the reconstructed image. 

The asymmetry in the phase of the aperture function, 
X, could be caused by objective aperture misalignment or 
by contamination on the aperture charging and causing a 
phase shift to the electron waves in addition to the lens 
aberrations. However, we can use the phase of G(IX', 9') 
to examine the phase variation over an overlap region. 
Fig. 8 shows the phase of G_(Ix', p') for the overlap regions 
corresponding to the (111) relative reciprocal-lattice 
vector, and indeed its distorted shape, which cannot be 
explained by aperture misalignment, indicates that 
aperture charging is occurring. 

High-resolution electron microscopy is often per- 
formed without a physical objective aperture being 
present. Conditions of partial coherence are relied upon 
to destroy the interference with the high-angle aberrated 
beams. Nellist & Rodenburg (1994) have shown that 
conditions of partial coherence imposed by the finite size 
of the detector pixels lead to the existence of an 'effective 
aperture' in aperture synthesis. A physical aperture is not 
required to separate the interference between different 

4.5 nm 

Parallelogram loops _ 
(T11) (I11) 

. / - . . .  j "-.._ 
(}20)0 .  +56 ° • -8 ° , ,g(2~0) 

(111) (111) 

(c) 

(T11) ( IT I )  

1 t - . . . / ' - , ,  
7 nm (fi2o)Q. -10 ° • -22° . .•(22o1 

. / -  
"~w • r  

(111) (111) 

(a9 

Fig. 7. The sum of  beam phase differences around (a), (b) triangle and 
(c), (d) parallelogram closed loops for the data from the (a), (c) 
4.5 nm and (b), (d) 7 nm thick specimens. Ideally, the sum round a 
closed loop should be zero. Notice how the parallelogram loops are 
much closer to zero than the triangles. 

Fig. 8. The phase of  the Fourier transform, with respect to the probe 
position, of  the recorded intensities at the spatial frequency 
corresponding to the component of  the (171) reciprocal-lattice 
vector along the probe line-scan direction. This is the phase 
corresponding to the magnitude in Fig. 5(b). For clarity, we have 
used Fig. 5(b) as a mask so that only the phases in the overlap regions 
are shown. Note how the phase variation is distorted towards a point 
on the left of  each overlap region; this indicates that the aperture 
blade is charging at this point. 
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beams. In practice, it is best to use a physical aperture 
that is significantly larger than the coherence envelope, 
such that it does not interfere with the imaging process 
but does prevent too many high-angle convergent beams 
from contributing to the incoherent background. In the 
experiment described here, the effective aperture has a 
radius of approximately 11 mrad, so the experiment was 
repeated with a physical objective aperture with a radius 
of about 16 mrad. The CBED pattern, formed in a similar 
way to Fig. 1, is shown in Fig. 9 and shows that there is 
now multiple overlap between the diffracted discs. 
Determination of the magnitudes of the diffracted beams 
now becomes more difficult, but still may be possible. 
Here, we will limit ourselves to the accuracy of the 
phases. A relevant plane of the complex G(la', p') 
function is shown in Fig. 10, and indicates how the 
effective aperture has separated all the regions of 
interference. The phases of the interference regions in 
Fig. 10 are all more symmetric and flatter than Fig. 8. 
Phase-closure loops for these data are shown in Fig. 11 
and show a dramatic improvement in the triangle phase- 
closure loops, demonstrating a big improvement in the 
symmetry of the aperture-function phase. 

There is still some deviation from zero in the phase- 
closure loops shown in Fig. 11 and we should consider 
other factors that can affect the phase accuracy. One 
experimental difficulty encountered was the selection of 
the midpoint of the overlap region. It is important that the 
midpoint is used in all overlaps to avoid the effects of the 
lens aberrations. Even if the phase of the aperture 
function is asymmetric, we must still use the same point 
in all of the overlaps corresponding to a particular 
relative reciprocal-lattice vector so that the same phase 

offset always applies. The electron-optical configuration 
of the spectrometer used to energy filter the images gives 
rise to distortions in the recorded microdiffraction 
patterns. The distortions are complicated and, as yet, 
we have not been able to correct for them, so the overlap 
midpoint positions were determined by hand. For a well 
focused probe, the phase of GOt', p') in the overlap 
regions should be reasonably fiat, especially at the centre 
of the overlap region. However, aperture charging, 
defocus and astigmatism can all conspire to increase 
the phase gradient within an overlap region, as is 

(a) 

Fig. 9. A CBED pattern from Si(110) formed using a convergence semi- 
angle of approximately 16 mrad. This figure has been formed by 
summing the coherent microdiffraction patterns for every probe 
position collected. The logarithm of the intensity is shown, to reduce 
the dynamic range of the figure. 

(b) 

Fig. 10. The (a) magnitude and (b) phase of the Fourier transform, with 
respect to the probe position, of the recorded intensities at the spatial 
frequency corresponding to the component of the (111) reciprocal- 
lattice vector along the probe line-scan direction. These figures are 
the large-aperture equivalents of Figs. 5(b) and 8. Although the data 
set was collected with a beam convergence semi-angle of 
approximately 16 mrad, giving multiple disc overlap, the effective 
aperture still separates the various interference regions. 
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demonstrated by aperture charging in Fig. 8. For the 
data presented in §2, an error of one detector pixel in 
selecting the overlap region midpoint of the (002) relative 
reciprocal-lattice-vector regions can lead to a change of 
up to 29 ° in the determined phase. However, in this case, 
the point is close to the aperture edges and therefore the 
phase gradient is high due to aperture charging. For the 
data collected using an effective aperture to separate the 
interference regions, the error reduces to about 10 ° for 
the (002) relative reciprocal-lattice vector. 

A further source of error is that not all of the energy 
expressed in GOt', p') at a p' value corresponding to a 
crystal periodicity actually comes from diffraction by that 
periodicity. There is always an amorphous oxide layer 
that, being non-periodic, will scatter into all spatial 
frequencies. Similarly, it is observed that the beam 
current fluctuates in a random manner and will also add 
spurious energy at all p' values. Finally, variations in 
specimen thickness will cause a non-periodic variation in 
the diffracted-beam intensities and therefore in the 
magnitude of the interference effects. The effects of all 
this non-periodic energy can be seen in the curves in Fig. 
4, which are not perfectly sinusoidal, and in the 
observation of magnitude in the non-overlapping parts 
of the discs in Fig. 5. This energy will have a phase in 
G(ltt', p') that is not related to the crystal structure and 
thus its addition to the periodic interference in the overlap 
regions will cause error. It must be remembered, however, 
that the approach taken here is a simplification of a 
method that can deal with a general non-periodic 
specimen (Rodenburg & Bates, 1992). In principle, we 
can perform a deconvolution in the ltt' direction to solve 
for the entire specimen function, including the non- 
periodic parts such as the amorphous oxide layer and the 
thickness variations. 

4. Aperture synthesis using inelastically scattered 
electrons 

For the experiments described above, a spectrometer was 
used to ensure that only the zero-energy-loss electrons 
were detected. If desired, this experimental arrangement 
can also be used to collect electrons at a specific energy 
loss. The coherent microdiffraction patterns and shadow 
images collected using electrons that have lost energy by 
exciting a plasmon also display coherent interference 
effects. Here, we present the results of an aperture- 
synthesis experiment performed using the plasmon-loss 
electrons scattered by a graphite test specimen. 

The energy-filtering spectrometer was set to pass 
electrons that had lost energy by exciting a single 
plasmon in a graphite, with a filter window of 
approximately 5 eV centred at an energy loss of 
~25 eV. Shadow images (with no objective aperture 
present) were collected over 32 probe positions at a probe 
spacing of 0.05 nm. A typical shadow image is shown in 
Fig. 12. As expected, significant magnitude is observed 
in G(ff, p') at the p' value corresponding to the 0.34 nm 
lattice spacing of graphite. The magnitude and phase of 
this plane of GOt', p') are show in Fig. 13, which shows 
that the effective aperture has separated the interference 
regions. For comparison, the experiment was repeated 
using the zero-loss electrons. Two data sets were 
collected for each energy whilst trying to maintain the 
probe scan over the same region of specimen. The phases 
extracted from the centres of the overlap in G(I£, p') for 
all four experiments are shown in Table 2. The values 
shown are therefore the phase differences between 
adjacent beams for the five diffracted beams detected. 

(1~)1) Triangle loops (1(~1) 

(111) (111) 
(a) 

Parallelogram loops _ 
(~'11) (111) 

122o)• .  " ° • +27 ° .,,,•(22o) 

(111) (111) 
(b) 

Fig. 11. The sum of beam phase differences around (a) triangle and (b) 
parallelogram closed loops for the data collected using a beam- 
convergence semi-angle of approximately 16 mrad. Note how the 
triangle closures are much improved compared with Fig. 7. 

Fig. 12. A coherent shadow image from graphite formed using electrons 
that have lost energy by exciting a plasmon. Note that coherent 
interference regions can be observed. 
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It can be observed that even for one energy there is a 
significant variation in the measured phases, which may 
be due to the scan sampling a slightly different region of 
specimen with a slightly different tilt and thickness. 
Since the phase offset was calculated by setting the first- 
order beam phases to be identical, any asymmetry in the 
diffracted-beam phases will be added to the second-order 
phases. In addition, the second of the zero-loss experi- 
ments did show some crystal tilt and the 002-004 overlap 
region was found to be dominated by the non-crystalline 
background described earlier. 

The sample of graphite used for these experiments was 
relatively thick and may well have contained strongly 
bent planes, hence the large deviation of the determined 
phases from the +90 ° expected for single scattering 

Table 2. The phase of  G(~t', p') (°) at the centres o f  the 
overlaps, at [P'I = (0.34 rim) -1, for the two zero-loss and 

two plasmon-loss experiments 

The errors shown are the largest deviation in phase found in the pixels 
adjacent to the one selected. The phase offset due to the arbitraryorigin 
of the scan has been calculated by assuming that the (000)-(002) and 
(002)-(000) phases are equal and opposite, which is equivalent to 
assuming that the two first-order diffracted beams have equal phase. 

Beams 002-004 000-002 002-000 004-002 

Plasmon 
exp. 1 50 (6) 102 (2) -102 (2) -49  (17) 

Plasmon 
exp. 2 45 (9) 103 (3) -103 (3) -48  (7) 

Zero loss 
exp. 1 46 (6) 98 (4) -98  (3) -37  (3) 

Zero loss 
exp. 2 - 6  (21) 107 (3) -107 (7) -42  (3) 

(a) 

(b) 

Fig. 13. The (a) magnitude and (b) phase of the Fourier transform, with 
respect to the probe position, of  the plasmon-loss shadow-image- 
intensity data set from graphite at a spatial frequency of(0.34 nm) -1. 
The usual interference features expected in the zero-loss data can 
also be observed here. 

theory. The interesting result from the data, however, is 
that, within the limits of the experimental error, there is 
no significant difference between the phases measured 
using the plasmon-loss electrons and the phases 
measured using the zero-loss electrons. This result is 
consistent with the idea that the scattering is due to a 
plasmon scattering event combined with at least one 
elastic scattering event. Indeed, phase-contrast images of 
graphite have already been observed by detecting the 
plasmon-loss electrons with an axial collector aperture in 
a STEM, and this scattering mechanism was proposed by 
Craven & Colliex (1977). In that work, it was noted that 
the range of defocus over which fringes could be 
observed was reduced in the plasmon-loss case, which 
was explained by the slight angular spread of the 
plasmon scattering leading to an increased effective 
collection angle. In the present work, the effect is to 
increase the effective detector pixel size slightly, leading 
to worsened spatial coherence (Nellist & Rodenburg, 
1994), possibly compounded by the dispersion of the 
spectrometer over the energy window used. In principle, 
it should be possible to measure the angular spread by 
observing the visibility of the interference fringes in the 
shadow image as a function of the illuminating probe 
defocus. As the defocus is increased, the observed fringes 
become finer and are therefore more susceptible to being 
washed out by the angular spread of the plasmon. 

5. Conclusions 

By solving the phase problem for beams diffracted by 
crystalline specimens, we have demonstrated that images 
with a resolution well beyond the conventional point and 
information limits can be formed in transmission electron 
microscopy. Using a microscope with a relatively poor 
point resolution (0.45nm) and information limit 
(0.33 nm), we have examined the accuracy of the phase 
retrieval in a ptychographically reconstructed image that 
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resolves the 0.136nm 'dumbbell' spacing in silicon 
viewed along (110). It is found that the effects of aperture 
charging can be detected using the redundancy of the 
data set and, compounded by distortions in the detection 
system, may slightly affect the accuracy of the recon- 
struction. However, the images display the expected 
dumbbell contrast and it should be remembered that the 
phase errors described here are much smaller than the 
phase shifts introduced into conventional bright-field 
imaging by the lens aberrations. As another example of 
an application of the phase information, we have used the 
phase information to compare the Bragg scattering of the 
zero-energy-loss and plasmon-loss electrons and found 
that the reconstructed beam phases are within the 
experimental error of each other, supporting the view 
that the scattering of the plasmon-loss electrons is 
dominated by multiple elastic-inelastic scattering. The 
method, as it has been described here, can be applied to 
the study of any perfectly periodic structures. Since the 
probe scan need only include a few unit cells, the method 
is very suited to the structural study of nanocrystals or 
tiny precipitates. Any application of conventional bright- 
field imaging to a perfectly periodic structure is also a 
candidate for aperture synthesis. 

When the specimen is thick enough for dynamical 
scattering effects to become important, the reconstructed 
beam phases are not equal to those that would be 
scattered by plane-wave illumination (Plamann & 
Rodenburg, 1998). In such cases, however, the conven- 
tional bright-field images are usually compared with 
forward simulations of trial structures. A similar 
approach could be applied here. Indeed, the higher- 
resolution information included in the data and the lack 
of lens aberrations create a much more constrained, and 
therefore probably more accurate, comparison. 

It is, however, important to re-emphasise that the 
method described here is a simplification of a general 
method that does not require perfect periodicity. For a 
non-periodic specimen, the scattering becomes a con- 
tinuous distribution and is no longer a set of discrete 
beams. For a given spatial frequency of interference, p', 
the data set G(it', p') contains a convolution in It' of the 
disc-overlap function with a continuous function repre- 
senting the interference between all parts of the specimen 
scattering separated by the reciprocal-space vector p'. In 
principle, we can deconvolve the disc-overlap function, 
even when the lens parameters are not accurately known 
(McCallum & Rodenburg, 1993b) and apply a contin- 
uous object function reconstruction, which will include 
stepping out to form images of non-periodic specimens at 
resolutions many times the conventional limit. 
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