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Abstract

A solution to the phase problem of electron diffraction is
descrnibed which allows an aberration-free atomic resolu-
tion image of Si{110), showing the expected dumbbell
contrast, to be reconstructed at a resolution of 3 times the
point resolution and 2.5 times the information limit of the
scanning transmission electron microscope (STEM)
used. The data set required consists of coherent
microdiffraction pattemns recorded as a function of
illuminating probe position and the method of image
reconstruction beyond the conventional resolution limits
using this data set is described. Using the inherent
redundancy in the experimental data set, the accuracy of
the reconstructed image is examined and the experi-
mental imperfections that affect it are identified. It is
found that aperture charging, compounded by distortions
in the detection system, are the major sources of error. As
an additional application of this method of phase
retrieval, the diffracted-beam phases of electrons that
have lost energy by exciting a plasmon are compared
with those of elastically scattered electrons in a specimen
of graphite. Within the limits of this approach, it is found
that there is no difference in the beam phases, supporting
the view that electrons that have undergone multiple
elastic and inelastic scattering dominate the plasmon-loss
scattering at higher angles.

1. Introduction

Although the resolution of the transmission electron
microscope is usually limited by the aberrations of the
image-forming lens, here we show how a solution to the
phase problem provides an opportunity to overcome this
limit. In conventional weak-phase-object imaging, the
point resolution is the highest periodicity that can be
directly interpreted in terms of the specimen structure
[see Spence (1988) for a review of resolution limits in
TEM]. Beyond this limit, the information is corrupted
and contrast reversals occur. Various techniques have
been suggested in order to solve for the phase of the
image-plane wavefunction, such as off-axis holography
(Lichte, 1991; Orchowski, Rau & Lichte, 1995) and
focal-series reconstruction (Van Dyck, Op de Beeck &
Coene, 1993). Knowledge of the image phase informa-
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tion allows the lens aberrations to be deconvolved, thus
extending the resolution. However, the partial coherence
of the electron wave in the microscope provides a further
limit, known as the information limit, determined by the
inability of high spatial frequencies to express themselves
at all upon the image contrast.

An altenative technique of phase retrieval has been
proposed by Rodenburg & Bates (1992), which allows
the lens aberrations to be deconvolved and uses a method
of aperture synthesis to reconstruct the phase information
for scattering beyond the conventional information limit.
Optical configurations for such a method are discussed
more fully in the following paper (Plamann & Roden-
burg, 1998) (paper 1I). The data set used experimentally
in this work is the intensity of coherent microdiffraction
patterns recorded in a scanning transmission electron
microscope (STEM) as a function of the illuminating
probe position. By reciprocity (Cowley, 1969; Zeitler &
Thomson, 1970), this data set is equivalent to the set of
conventional TEM images collected as a function of the
illuminating beam tilt. In the case of a weakly scattering
object, application of the aperture synthesis method can
separate aberration-free information up to twice the point
resolution and a deconvolution of lens aberrations is not
required (Rodenburg, McCallum & Nellist, 1993). The
image information for a crystalline specimen can be
similarly separated (McCallum & Rodenburg, 19934). In
this case, only a line scan of probe positions is required
and, in principle, a resolution improvement of many
times the conventional limits can be achieved.

For a crystalline specimen, the aperture synthesis
method is similar to an approach proposed earlier by
Hoppe (1969) and Hoppe & Strube (1969), by which a
reduction in the illuminated area of the specimen causes
the diffracted orders to overlap and coherently interfere,
thus revealing their phase relationships; this approach has
been given the name ‘ptychography’ (Hegerl & Hoppe,
1970). Such a configuration is realized in the STEM and
use of the coherent diffraction information has been
proposed as a source of resolution improvement (Cowley
& Jap, 1976; Nathan, 1976; Spence, 1978). High-angle
coherent diffraction information has been utilized
experimentally to accurately located atom positions in
Si(110) by Konnert, D’Antonio, Cowley, Higgs & Ou
(1989), but their approach was to match the experimental
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opposite parts of the objective lens (Fig. 2) and the
aberrations cancel. Fig. 3 is an example of a defocused
coherent microdiffraction pattern from a relatively thick
Si(110) crystal. For ptychographical aperture synthesis, it
is advantageous to work with a focused probe, which
reduces the effects of detector incoherence (Nellist &
Rodenburg, 1994) and improves the accuracy of the
technique, as will be discussed later. Using a focused
probe involves using underfocus to counteract the effects
of spherical aberration, which results in (4) being a much
flatter function of p'.

The final term in the argument of the cosine function
in (3) shows that the intensity in a disc-overlap region
varies sinusoidally as a function of probe position. This
effect is simply STEM lattice imaging (Spence &
Cowley, 1978). Such an intensity variation is observed
experimentally, as is shown in Fig. 4, where the intensity
at points in various disc overlaps has been plotted. It is
important to note that the spatial frequency of the
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intensity variation depends only on the difference of the
two scattering vectors involved, not on the absolute angle
of diffraction. Since there are only three different relative
reciprocal-lattice vectors for the disc overlaps in Fig. 1,
there are only three possible spatial frequencies of
intensity variation. Equation (3) shows that the frequency
of intensity variation along a line scan is given by the
component of the relative reciprocal-lattice vector, H,
parallel to the scan direction. By selecting an appropriate
scan direction, we can conveniently separate the three
spatial frequencies. A full two-dimensional probe scan is
not required. We proceed by taking the Fourier transform
of the intensity data with respect to the probe position to
form a data set we call G(w',p’) [see Plamann &
Rodenburg (1998) for the full expression], where p’ is the
reciprocal-space vector conjugate to p. The plane p' = 0
of G(p', p') is simply the CBED pattern shown in Fig. 1.
We also observe significant magnitude in G(', p') at
three other frequencies, as shown in Fig. 5, correspond-
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Fig. 4. Plots of intensity versus probe position for various disc overlaps
corresponding to the (a) (111), (b) (111) and (c) (002) relative
reciprocal-lattice vectors. Notice how the period of the variation
depends on the component of the relative reciprocal-lattice vector
along the scan direction, not on the absolute scattering angle. Thus,
the interference involving the 004 disc can be resolved by the
microscope and has a relatively long period along the line scan used.
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Table 1. The reconstructed phases of all beams up to 004 for approximately 4.5 nm and 7 nm thick specimens of
Si(110)

The theoretical phases using a multislice calculation are also presented for various thicknesses. For the experimental results, the arbitrary origin of
real space has been set by minimizing the phase differences between the four {111}-type symmetry-related beams.

Experimental ~ Experimental

phase for phase for
Beam 4.5 nm (°) 7 nm (°)
111 +112 +138
111 +120 +138
111 +120 +137
111 +128 +138
220 +128 —169
220 +171 +171
113 —49 +6
113 —-51 -1
113 -59 -9
113 =26 -3
004 0 +50
004 -17 +38

reflections were determined. Note that, at the thicknesses
used, the kinematically forbidden {002} and {222}
beams were not present in any significance, they do not
show strong interference features in Fig. 5 and therefore
were not included in the reconstruction. The magnitudes
of the diffracted beams were determined from the non-
overlapping parts of the discs in the CBED pattern (Fig.
1). In general, however, a reconstructed image is usually
much more sensitive to the phases of its Fourier
components rather that the magnitudes (Ramachandran
& Srinivasen, 1970). The reconstructed image for the
approximately 7 nm thick crystal is shown in Fig. 6,
along with a similar reconstruction for a crystal
approximately 4.5 nm thick. These images are aberration
free and contain periodicities as small as 0.136 nm, thus
resolving the atomic columns. An improvement of a
factor of 3 over the point resolution and a factor of 2.5
over the conventional information limit has been
achieved.

It can be seen from Fig. 6 that the distance between the
phase maxima for a dumbbell pair is slightly larger than
the 0.136 nm expected. The sharp truncation of recipro-
cal space beyond the 004 reflections results in the atomic
locations being convolved with a point spread function
(PSF). Addition of the PSF’s for the adjacent atoms has
the effect of apparently widening the spacing slightly.
However, this image is perfectly periodic and the quality
of the reconstruction is therefore more easily considered
in reciprocal space.

3. The accuracy of the reconstructed phases

We have shown how it is possible to solve the phase
problem and reconstruct images beyond the information
limit using aperture synthesis. However, at this point we
should examine how accurately we have determined the
phases in the experimental data. To determine the quality

Calculated Calculated Calculated

phase for phase for phase for

3 nm () 6 nm (°) 9 nm (°)
+109 +127 +156
+109 +127 +156
+109 +127 +156
+109 +127 +156
+124 +153 —-166
+124 +153 —166
-53 =23 +13
-53 =23 +13
-53 =23 +13
-53 =23 +13
—43 —1 +53
—43 -1 +53

of the reconstruction, we compare the experimentally
determined phases with those expected theoretically.
Table 1 shows the reconstructed phases for the two
specimen thicknesses. We have arbitrarily shifted the
origin of real space to a centre of symmetry in the crystal
so that the experimental phases of the Fourier compo-
nents can be compared with theory. The position of the
centre of symmetry was chosen by minimizing the
differences between the four {111} beams. Any errors in
the determined phases of these beams, and therefore in
determining the centre of symmetry, will manifest
themselves as errors in the phases of the higher-order
beams. We can immediately see that the phases have
deviated considerably from the +£90° expected from
kinematical theory. So, in Table 1, we also present the
phases determined from dynamical calculations
(Plamann & Rodenburg, 1998) for various thicknesses.
Propagation effects will in general cause a further
variation in phase over a diffracted disc, and thus the
phases determined here by stepping out also deviate from
the Fourier components of the exit-surface wavefunction
for axial illumination.

Although the phases in Table 1 are generally within the
range defined by the calculations for thicknesses closest
to the experimental ones, it can be seen that there is a
degree of variation in the determined phases for
symmetry-related beams, especially for the thinner
specimen. There are many possible reasons for this and
we will examine some here.

It is possible that there are multiple paths of stepping
out to reach any given reciprocal-lattice point. Both paths
must give the same result since the phase of the diffracted
beam must be single valued. Equivalently, the phase
difference round any closed path of relative reciprocal-
lattice vectors must sum to zero, which we call ‘phase
closure’ and is a useful check on the self-consistency of
the experimental data. The results of some phase-closure
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resolves the 0.136 nm ‘dumbbell’ spacing in silicon
viewed along (110). It is found that the effects of aperture
charging can be detected using the redundancy of the
data set and, compounded by distortions in the detection
system, may slightly affect the accuracy of the recon-
struction. However, the images display the expected
dumbbell contrast and it should be remembered that the
phase errors described here are much smaller than the
phase shifts introduced into conventional bright-field
imaging by the lens aberrations. As another example of
an application of the phase information, we have used the
phase information to compare the Bragg scattering of the
zero-energy-loss and plasmon-loss electrons and found
that the reconstructed beam phases are within the
experimental error of each other, supporting the view
that the scattering of the plasmon-loss electrons is
dominated by multiple elastic—inelastic scattering. The
method, as it has been described here, can be applied to
the study of any perfectly periodic structures. Since the
probe scan need only include a few unit cells, the method
is very suited to the structural study of nanocrystals or
tiny precipitates. Any application of conventional bright-
field imaging to a perfectly periodic structure is also a
candidate for aperture synthesis.

When the specimen is thick enough for dynamical
scattering effects to become important, the reconstructed
beam phases are not equal to those that would be
scattered by plane-wave illumination (Plamann &
Rodenburg, 1998). In such cases, however, the conven-
tional bright-field images are usually compared with
forward simulations of trial structures. A similar
approach could be applied here. Indeed, the higher-
resolution information included in the data and the lack
of lens aberrations create a much more constrained, and
therefore probably more accurate, comparison.

It is, however, important to re-emphasise that the
method described here is a simplification of a general
method that does not require perfect periodicity. For a
non-periodic specimen, the scattering becomes a con-
tinuous distribution and is no longer a set of discrete
beams. For a given spatial frequency of interference, p’,
the data set G(', p') contains a convolution in p’ of the
disc-overlap function with a continuous function repre-
senting the interference between all parts of the specimen
scattering separated by the reciprocal-space vector p'. In
principle, we can deconvolve the disc-overlap function,
even when the lens parameters are not accurately known
(McCallum & Rodenburg, 19934) and apply a contin-
uous object function reconstruction, which will include
stepping out to form images of non-periodic specimens at
resolutions many times the conventional limit.
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